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Abstract

NMR relaxometry is a very useful tool for understanding various chemical and physical phenomena in complex multiphase systems.
A Carr-Purcell-Meiboom-Gill (CPMG) [P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy, Clarendon Press, Oxford,
1991] experiment is an easy and quick way to obtain transverse relaxation constant (T2) in low field. Most of the samples usually have a dis-
tribution of T2 values. Extraction of this distribution of T2s from the noisy decay data is essentially an ill-posed inverse problem. Various
inversion approaches have been used to solve this problem, to date. A major issue in using an inversion algorithm is determining how accu-
rate the computed distribution is. A systematic analysis of an inversion algorithm, UPEN [G.C. Borgia, R.J.S. Brown, P. Fantazzini, Uni-
form-penalty inversion of multiexponential decay data, Journal of Magnetic Resonance 132 (1998) 65–77; G.C. Borgia, R.J.S. Brown, P.
Fantazzini, Uniform-penalty inversion of multiexponential decay data II. Data spacing, T2 data, systematic data errors, and diagnostics,
Journal of Magnetic Resonance 147 (2000) 273–285] was performed by means of simulated CPMG data generation. Through our simulation
technique and statistical analyses, the effects of various experimental parameters on the computed distribution were evaluated. We con-
verged to the true distribution by matching up the inversion results from a series of true decay data and a noisy simulated data. In addition
to simulation studies, the same approach was also applied on real experimental data to support the simulation results.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

NMR relaxometry is a very useful tool for understand-
ing various chemical and physical phenomena in complex
multiphase systems. One of the key parameters that are
highly exploited to indirectly measure several properties
of the sample is the transverse relaxation time (T2). This
time constant is measured most commonly by a simple
CPMG experiment [1]. In a CPMG experiment, echo
heights are usually recorded at discrete linearly spaced time
points and the decay of the echo heights are characterized
by the time constant T2, where time dependent echo signal
can be represented as,
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SðtÞ ¼ S0 expð�t=T 2Þ ð1Þ

Here, S0 is the echo envelop height at initial time point, S(t)
is echo height as a function of time, and t is the time vector.
When the sample under investigation has only one type of
species in identical environments the echo heights would
obey a mono-exponential decay pattern. But in most sys-
tems, there are several different species in multiple different
environments. All these ‘species–environment’ combina-
tions, in principle, will have characteristic T2 values for
their decaying echo signals. It is intuitive that, in natural
systems, the transition from one T2 value to the next would
rather be smooth. This results in a T2 distribution with
multi-components (bi-modal, tri-modal, etc.) rather than
mono-, bi-exponential, etc. Thus, the discrete-time decay
data obtained through the CPMG experiment on a
complex sample will have information regarding all the
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components of the entire distribution hidden in it. This raw
data will be corrupt by some noise, as well. Hence, to have
a clear understanding of a sample through NMR relaxom-
etry, it is crucial to obtain a reliable deconvolution of all
the T2 components from the discrete, noisy, decaying echo
signal. This is essentially an ill-conditioned inverse prob-
lem, which can be represented in the form of well known
Fredholm integral equation of first kind (IFK) [4],

Sd ¼ S0

Z b

a
expð�t=T 2Þf ðT 2ÞdT 2 þ e ð2Þ

where Sd is signal raw data, S0 is maximum signal, f(T2) is
the frequency of a species with a specific characteristic T2,
and e is random noise.

Since the CPMG data collected in an experiment is dis-
crete in time the IFK here is better represented in the dis-
crete form of,

Si ¼ S0 �
X

fkðT 2Þ expð�ti=T 2kÞ
n o

þ e ð3Þ

It is characteristic of this type of IFK equations that it is
difficult to obtain useful solutions to them by straight-
forward methods like Gaussian elimination, Cholesky, or
QR-Factorization. This inverse problem of T2 deconvolu-
tion has been solved by linearization, followed by the use
of different kinds of regularization parameters [5,6]. Several
physically convincing constraints like non-negativity are
also introduced to dampen the unnecessary oscillations in
the solutions. The uniform-penalty inversion (UPEN) algo-
rithm is one of the most successful regularization processes
applied to NMR relaxation data [2,3]. This algorithm is
fundamentally a least square minimization routine. To
avoid excessive details in the computed distribution a pen-
alty factor is also added to the squared error of fit, in this
algorithm. A curvature penalty factor is adopted in UPEN
within the data range. A coefficient (Ck) is also multiplied
to the penalty factor. The value of this coefficient, Ck is
iteratively adjusted in order to ensure a strict uniformity
of the penalty factor. Thus, the main aim of this algorithm
is to minimize,

X
S0 �

X
fkðT 2Þ expð�ti=T 2kÞ � Si

� �2

þ
X

Ckðfk�1ðT 2Þ � 2f kðT 2Þ þ fkþ1ðT 2ÞÞ2 ð4Þ

where the first term is the residual term and the second
term is the penalty term. Similar to any other inverse prob-
lem cases, this deconvolution process has the drawback of
non-uniqueness. Even if there exists an exact solution (i.e.,
a specific distribution of T2) that has been used to generate
the raw decay data, it may not be unique. The same raw
data can satisfy several different model solutions very
nicely (with very low magnitude of error). Rank-deficiency
in the data is usually a major contributor to this problem
[4]. Thus, the estimated model may get significantly
smoothed or otherwise biased relative to the true model.
Characterizing such bias through model resolution analysis
is essential to properly applying models to real systems.
The ill-conditioned nature of the inverse problem imparts
instability into the computed solution. A small change in
a single measurement can lead to an enormous change in
the estimated model. Thus, as the noise level rises the com-
puted model loses its precision in resolution. Because of
these reasons, it is essential to perform systematic statistical
analyses on the responses of a regularization algorithm like
UPEN to a range of CPMG data similar to real experi-
ments. If we synthesize data from a known model of T2 dis-
tribution and then try to calculate back the true model
using a regularization algorithm, it will provide an estimate
of accuracy of the algorithm through comparison with the
true model. This study defines limits on the UPEN algo-
rithm based on a known T2 distribution and a specific set
of experimental conditions.
2. Methods

An algorithm is developed and the code is written in
Matlab� (can be obtained by requesting the first author)
to generate simulated CPMG T2 exponential data. This
algorithm takes the user inputs in terms of: number of com-
ponents, relative contribution of each component, shape of
each component, mean T2 values of each component, var-
iance of each component, and signal-to-noise (SNR) of the
measured data. All raw discrete-time data are normalized.
SNR effect is studied by creating simulated CPMG data
with SNR level from 80 through 1000. The computed
model resolution is studied by creating simulated CPMG
data (with commonly encountered SNR level of 400) with
component mean separations ranging from 450 through
900 ms. UPEN algorithm is run on these simulated data
to obtain the computed distributions. The deviation of
the computed solution from the true model is quantita-
tively analyzed through two-sample Kolmogorov–Smirnov
test, which is an established statistical technique for com-
parison of two arbitrary distributions. The Kolmogorov–
Smirnov test statistic is the maximum of the absolute differ-
ences between the two cumulative distribution functions of
the distributions being compared [7]. If F*(x) is the true
distribution and F(x) is the computed distribution the
hypotheses for our two-sided test would be:

H 0 : F ðxÞ ¼ F �ðxÞ for all x from �1 to þ1 ð5Þ
H 1 : F ðxÞ ¼ F �ðxÞ for at least one value of x ð6Þ

The test statistic, T1 is expressed as,

T 1 ¼
sup

x
j F �ðxÞ � F ðxÞ j ð7Þ

The decision rule is that we reject H0 at the level of signif-
icance a if the test statistic, T1 exceeds 1 � a quantile w1�a

as given by the corresponding lookup table.
The means and standard deviation of the computed dis-

tributions were calculated using the log-normal probability
distribution function:



Fig. 1. Comparison of true T2 distribution and UPEN computed T2

distributions from data with varying noise levels.
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f ðx; l; rÞ ¼ 1

r
ffiffiffiffiffiffi
2p
p e�ðx�lÞ2=2r2 ð8Þ

where l and r are the mean and standard deviation of the
variable. The computed distribution means and standard
deviations were compared with gradual increase of SNR
and the distance between the component means.

For experimental validation of the proposed new
method, and to show the usefulness, we generated (some)
a set of experimental (real) data, as well. Three solutions
of MnSO4 of varying strengths were made so that their
T2 values are 1 order of magnitude apart. Three different
NMR tubes of diameter of 5 mm were filled with these
MnSO4 solutions, and placed together in a 15 mm diameter
tube for generation of CPMG data using the minispec mq
series bench-top NMR equipment tuned at 20 MHz (Bru-
ker Optics Inc., TX, USA). We did the same experiment
with the same sample with increasing number of scans, to
observe the effect of SNR on computed distribution. We
measured the SNR in the CPMG data with 128 scans.
We generated simulated CPMG data from a model distri-
bution with three components whose mean values corre-
spond to that of the three different MnSO4 solutions
obtained from the data with very high SNR (2048 scans).
We added noise to it of the same level as measured from
the 128 scan experiment (SNR = 256). Similarly, we gener-
ated more simulated data with gradual increase in the com-
ponent width. We did UPEN inversion on all these
simulated data. We calculated the Kolmogorov–Smirnov
statistic between the distribution computed by UPEN from
the real data (128 scans), and the same from the simulated
noisy data with varying component widths.
Fig. 2. Effect of signal-to-noise in raw data on deviation of computed
mean T2 value from the true mean T2 value.
3. Results

Simulated data were created for one component T2 dis-
tribution with mean value of 100 ms and standard devia-
tion of 5 ms. SNR values of 40, 60, 80, 100, 200, 300, 400,
500, and 1000 were used to generate the simulated CPMG
data. As the SNR reduced, the broadening of the com-
puted peak is observed. Two extreme cases are shown
by comparing with the true model in Fig. 1. The two-
sample Kolmogorov–Smirnov tests are done between the
true distribution and computed distributions obtained
from simulated CPMG data with increasing SNR levels.
The Kolmogorov–Smirnov statistic values are plotted
against SNR levels in Fig. 2, to show how SNR contrib-
utes towards the deviation of computed model from the
true model. For UPEN, we observed that if we achieve
SNR level of about 400 that gave us best estimation of
the T2 distribution; we do not need to increase the SNR
beyond that value. The relationship between SNR and
the departure of the standard deviation (width of the
peak) values of computed distribution from that of the
true distribution was calculated and is shown in Fig. 3.
It is observed to show a negative power law type
relationship.
Simulated data were created for two component T2 dis-
tributions. The distance between the component-means are
set at 500, 550, 600, 700, and 900 ms. The standard devia-
tions of each component were 5. The SNR level is kept con-
stant at 400 for all simulations. This level of SNR is chosen
because the Kolmogorov–Smirnov statistic value is
observed to almost flatten out beyond 400 SNR. The evo-
lution of the computed distribution as the two components
approach each other is shown in Fig. 4. Kolmogorov–
Smirnov test is done between the true and computed
distributions.

The UPEN computed distributions from real experi-
mental data of MnSO4 solutions are shown in Fig. 5. The
increased resolution of components as the number of scans,
i.e., SNR increases is evident from the figure.

The calculated values of Kolmogorov–Smirnov statistic
between the distribution computed by UPEN from the real



Fig. 3. Deviation in computed T2 distribution width due to signal-to-noise
ratio.

Fig. 4. Resolving efficiency of UPEN algorithm (while signal-to-noise is
kept constant).
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experimental data (128 scans), and the same from the sim-
ulated noisy data with varying component widths are plot-
ted in Fig. 6.
Fig. 5. Effect of signal-to-noise ratio
The width of the model distribution was increased from
0 to 2 with linear intervals of 0.25. The width of 1.25 is
observed to give the lowest value of Kolmogorov–Smirnov
statistic. The value of Kolmogorov–Smirnov statistic in
this case is 0.052 which is less than 0.06072 the table value
of w1�a quantile with the level of significance (a) as 0.01. as
a result, we can accept the null hypothesis, i.e., the com-
puted distribution can be considered equivalent to the true
distribution. Hence, we can conclude that the true distribu-
tion of T2 in the sample will have a width very close to this
value.
4. Discussion

A major issue in using inversion algorithms for deconvo-
lution of T2 data in NMR relaxometry, is that when we get
a computed distribution by applying the estimation algo-
rithm we cannot determine how accurate the solution is
or in other words how close the computed distribution is
to the true distribution present in the sample under study.
Variation in several parameters like SNR, number of T2s
we are solving for, data spacing, etc. have influence on
the final solution. For many real systems we have no ‘a pri-

ori’ knowledge of the T2 distribution, as well. Thus we can-
not determine solution accuracy right away. Many a time it
is not practically possible to start developing a new inver-
sion algorithm suited for the experimental data in hand;
rather we need to make use of an existing algorithm. In this
case, the knowledge of efficiency of the existing algorithm
in inverting the noisy CPMG decay to the true T2 distribu-
tion is critical. The knowledge of the data quality (e.g.,
SNR) required in order to get sufficient accuracy in inver-
sion also becomes very useful. In these situations, an easy,
quick and practically feasible technique to check the effi-
ciency of the inversion algorithm, in hand, and to deter-
mine the necessary set of experimental parameters in
order to obtain data those will give satisfactory inversion
becomes a powerful tool.

Following our approach of using simulated CPMG data
to evaluate the efficiency of the deconvolution achieved by
an inversion algorithm, we were able to do detailed quan-
titative statistical comparison between the true distribution
on the peak resolving efficiency.



Fig. 6. Evolution of Kolmogorov–Smirnov statistics between true distribution and computed T2 distribution as starting distribution width is gradually
changed keeping the signal-to-noise ratio constant.
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and the computed distribution, and quantify the limita-
tions of the algorithm. The UPEN algorithm has been cho-
sen here just to illustrate the technique. The same technique
can be utilized if the inversion algorithm, in hand, to ana-
lyze the T2 data is a different one. The discrete-time decay
data is distorted by noise before the inversion algorithm is
operated. Just like any other inverse problems, this is a
mathematical challenge. Small variation in raw data intro-
duce(d) appreciable oscillation in the computed model,
resulting in broadening of the peaks. From Fig. 3 we can
see a power law type trend in the departure from the true
standard deviation as SNR changes. Using the Kolmogo-
rov–Smirnov test, we could observe that as the SNR
approaches 400 level and increases beyond that, the differ-
ence between the computed and true model flattens out and
falls below the quantile table value for significance level of
0.10. From this observation we can conclude that achieve-
ment of an SNR level of 400 can give us enough accuracy
in the computed distributions generated by UPEN
algorithm.

The bi-modal simulation studies showed us that the
UPEN algorithm can distinguish two different components
(with 5 standard deviations) until their mean values are
separated by at least �550 ms. This conclusion is valid only
for an SNR level of 400, which we kept fixed during this
part of simulation study. 400 SNR level being common-
place in many NMR relaxometry studies it can be con-
cluded that if two populations of T2s are P550 ms apart
then the computed distributions obtained through UPEN
algorithm are reliable.

By matching up the real data with varying width simu-
lated data, we could also converge to a very good estimate
of the true T2 distribution in an unknown sample. From
this analysis we conclude that, when we have data with a
specific SNR level, the model distribution which had the
lowest Kolmogorov–Smirnov statistic value would be the
closest prediction for the true distribution of T2 in the real
sample. This way we were able to alleviate the uncertainty
in the estimated distribution computed by an inversion
algorithm, even in the absence of complete ‘a priori’ knowl-
edge of the sample.

This approach of systematic evaluation of regularization
algorithms used for deconvolution of T2 data, enabled us to
quantify the accuracy of the computed distributions, and
helped us reduce the uncertainty in the estimated distribution
when very little is known about the sample. This study also
provides guidance regarding the extent of SNR we need to
achieve to get a reliable distribution. The approach described
here can also be very useful in optimizing the regularization
parameter for a specific kind of relaxation data.
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